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Thomas Robert Malthus, a British economist, was pessimis-
tic in his work “Essay on the Principle of Population” (1798).
The population grew according to a geometric progression.
The Food production grew according to an arithmetic pro-
gression.
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Figure: Population growth vs. food production: projections pointed to
population growth in geometric progression, while food production capacity
was growing in arithmetic progression.
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The transformation process in agriculture on a global scale
began in the middle of the 20th century.
Development and incorporation of new production technolo-
gies.
This process became known as the “Green Revolution”.
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One of the main components of the current phase of agricul-
tural research is Precision Agriculture (PA).
PA proved to be strongly dependent on imaging and mapping
technologies to estimate important agronomic characteristics.
Given this scenario, some mechanisms for obtaining these
images have stood out, in particular, Unmanned Aerial
Vehicle (UAV).
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UAVs capture images at
low and medium altitudes
(50 to 400m), providing a
more detailed view of the
region.
The development of new
sensors has enabled the
acquisition and use of
multispectral images in
PA.
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A multi or hyperspectral image, to be useful in agricultural
applications, needs, first, to have its bands aligned.
Co-registration presents a series of difficulties to be performed.
Each element is represented differently in each spectrum.
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Figure: Example of an image containing all bands. Blue, Green, Red,
Near-Infrared, and Red Edge, respectively.
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Figure: Checkerboard of two bands of the same image. Note that in
highlight there is the misalignment between the bands, where the same
line, in its different bands, should follow the same diffraction.
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Figure: Example of linear and non-linear transformations.
(Uchida, 2013).



Objectives

Introduction 13/80

The general objective of this work is to investigate the ability of
convolutional neural networks to identify and correct linear and
non-linear deformations in images obtained by UAVs in PA.
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Precision Agriculture (PA) is considered to be the third
revolution in modern agriculture.
PA aims to divides the fields into management areas that
are treated individually.
This results in the optimization of resources, generating
profit for farmers since the inputs are applied precisely,
avoiding waste
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Currently, UAV have become popular due to their more
affordable cost and the provision of high-resolution.
One of the main characteristics of UAV is the possibility of
coupling several sensors and thus making specific measure-
ments.
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(a) (b)

Figure: Two types of UAV: in (a) we have a fixed-wings; in (b) we have a
multi-rotor.
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Figure: The role of UAV for assessment of farms.
(MAES; STEPPE, 2019).
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Neural Netwoks use a mathematical model to simulating
the basic functioning of the brain.
The neurons are activated through the composition of two
functions: activation and propagation.
The neural models can be based on:

The training strategy: supervised or unsupervied.
The form of training: incremental or in batch.
The form of operation: unidirectional or recurring.
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CNN are a category of deep learning algorithms inspired by
the human learning process.
It can explore the spatial correlations among pixels in an
image to extract relevant attributes for different tasks.
Most CNN models available in the literature are defined in
terms of three types of layers.

Convolutional.
Pooling.
Dense.
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Figure: The structure of a CNN proposed by LeCun et al. (1990).
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U-Net is an architecture inspired by the Fully Convolutional
Network, proposed to address segmentation problems in
medical image.

Figure: U-Net architecture
(RONNEBERGER; FISCHER; BROX, 2015).
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The image registration process consists of a geometric trans-
formation, which relates the coordinates of a reference image
A to the coordinates of an image to be registered B.
The vast majority of methods for image registration are
composed of four basic steps:

1. Feature Detection.
2. Feature Matching.
3. Construction of Mapping Function.
4. Image Transformation.
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Figure: Necessary steps for registering images using keypoints.
(UCHIDA, 2013)
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Figure: Example of transforming an image (a) to the target image (b).
The result of the overlap, after transformation, is shown in (c).

(MATHWORKS, 2018).
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Deformation Recognition in UAVs
Images Using Deep Learning



Image Dataset

Deformation Recognition in UAVs Images Using Deep Learning 27/80

We considered two mosaics (18543×2635 and 8449×11180
pixels size) of UAVs’ images.
For each dataset, we selected grayscale patches of 128×128
pixels size.
We discard patches no significant visual information, i.e.,
number of pixels (n) with value equals to 0.

If n < 10, the patch is considered for the composition of
the dataset; otherwise, the patch is discarded.

Therefore, we built two datasets, DS1 and DS2, which
have, respectively, 3353 and 2365 images.
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Figure: For the construction of both datasets, we use the same strategy,
which consists of making cutouts in a mosaic to extract the patches.
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We considered only three linear distortions that may occur
during flight: translation, rotation and perspective transfor-
mation.
Rotation: we used θ = {0◦, 5◦, 10◦, 15◦}.
Translation: images were translated by 25 pixels in 4
possible directions: right and top; right and down; left and
top; and left and down, and the original image.
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Perspective transformation: it simulates UAV up and
down possibilities in moments of image capture.

We keep the proportion of lines identical to the original
image.
For the columns, the proportions in each of the distorted
classes created were: (0.05, 0.66); (0.05, 0.77); (0.02,
0.66); (0.02, 0.77).
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We cropped a 64× 64 pixels region aligned with the center
of the image to remove black areas that could influence the
neural network training and testing.

Figure: (a) Image after a 15-degree rotation transformation; (b) Cropped
region with 64× 64 pixels size.
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We trained the network with the subtraction of the deformed
patches (A) and their deformation-free patches (B), to
relate them.
To avoid negative values, we normalized the computed xij
values as follows:

xij = max(bij − aij , 0) (1)

Where aij ∈ A represents a pixel of patch A, bij ∈ B
represents a pixel of patch B and xij ∈ X represents a
pixel of patch X .
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Figure: (a) Artificially distorted image; (b) Corresponding distortion-free
image; (c) Result from the subtraction operation.
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We use the work of Eppenhof et al. (2019) to create
non-linear deformations.
We concatenate other linear transformations through an
interpolator method, in order to have as many random
transformations as possible.
We cropped a 64× 64 pixels region aligned with the center
of the image to remove black areas that could influence the
neural network training and testing, such as Linear Dataset.
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Figure: Distortion example.
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To implement the CNN we used the Python version of
Tensorflow, an open-source library developed by Google.
We evaluated our CNN model using both datasets.
For each dataset we selected 75% of the samples to compose
the training set, while the remaining images were used for
validation.
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We proposed an alternative architecture inspired by AlexNet,
which has a lower computational cost.
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In order to improve the evaluation of our CNN model we
compared its results with the ones obtained by 4 traditional
CNN models:

InceptionV3
ResNet
SqueezeNet
VGG-16
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For this comparison we used pre-trained networks on the
2012 ImageNet dataset and fine-tuned the whole CNN to
our classification problem for 20 epochs.
These networks have larger input sizes than our samples,
so the images were enlarged for adjustment.
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Results show that CNNs can identify the presence of linear
deformations.

Translation Rotation Perspective
CNN model DS1 DS2 DS1 DS2 DS1 DS2
ResNet 91.83 48.13 95.00 96.84 59.55 62.63
InceptionV3 20.00 60.10 98.48 98.23 20.00 65.96
VGG-16 94.76 65.15 98.63 98.74 84.89 75.20
SqueezeNet 90.51 40.40 91.77 96.15 55.68 55.20
Proposed 96.92 70.24 99.85 99.18 95.50 91.47

Table: Results (%) obtained for our CNN and the compared ones.
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Results show that CNNs can identify the presence of non-linear
deformations.

CNN model DS1 DS2
ResNet 98.95 94.36
InceptionV3 99.25 98.84
VGG-16 98.88 95.35
SqueezeNet 98.43 96.41
Proposed 97.53 92.92

Table: Results (%) obtained for each CNN model for non-linear
deformations.
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With a small loss of precision compared to traditional CNNs
to address non-linear deformations, the architecture proposed
in this work has the advantage of having a considerably
lower computational cost.

CNN model Number of parameters
ResNet 22,591,810
InceptionV3 22,081,826
VGG-16 14,797,122
SqueezeNet 723,522
Proposed 141,058

Table: Number of parameters of each CNN model.
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The results show the ability of CNNs to correctly identify
possible deformations inherent to the flight of a UAV, whe-
ther these deformations are of a linear or non-linear nature.
Also, an architecture with lower computational cost, but
with still high accuracy, proved to be effective in treating
the problem.
This information would be extremely valid for the subsequent
deformation correction process.
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Deformable Co-Registration Using Deep Learning
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We considered two dataset to evaluate the approach propo-
sed (soybean and cotton).
Both datasets have 1280 × 960 pixels size per image and
an average of 80% overlap between images.
The spectra present in the images are Blue, Green, Red,
NIR, and Red Edge.
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Images were obtained in a single flight, without any type
of pre-processing.
This flight took place at an average height of 100 meters,
at an average speed of 20m/s.

Under these conditions, the GSD is 6.8cm/pixel .
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Figure: Examples of images from soybean dataset: (a), (b), (c), and
(d) present, respectively, four different scenes captured by UAV, with the
columns represent the respective bands of the scene.
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Figure: Examples of images from cotton dataset: (a), (b), (c), and (d)
present, respectively, four different scenes captured by UAV, with the
columns represent the respective bands of the scene.
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The images were manually marked by two different experts,
to have a ground truth.
The experts marked 12 points in the green band.
In the sequence, the experts marked the equivalent points
in the other bands.
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Blue Green Red NIR Red Edge
Blue - 5.18 15.75 15.07 12.14
Green 5.18 - 15.09 12.33 4.02
Red 15.75 15.09 - 29.25 14.79
NIR 15.07 12.33 29.25 - 16.17

Red Edge 12.14 4.02 14.79 16.17 -

Table: Misalignment average, in pixels, between the sensors present in
soybean dataset.
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Blue Green Red NIR Red Edge
Blue - 28.30 12.11 33.28 8.48
Green 28.30 - 21.44 24.01 35.66
Red 12.11 21.44 - 14.94 21.30
NIR 33.28 24.01 14.94 - 39.37

Red Edge 8.48 35.66 21.30 39.37 -

Table: Misalignment average, in pixels, between the sensors present in
cotton dataset.
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We have proportionally reduced the images to 20% of their
original size, preserving their content and proportionality.
The purpose of this operation is to reduce the computational
cost of further training in relation to the original size of the
images.
The images will be 256× 192 pixels size.
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The non-linear deformations consisted of two random grids,
one for displacements in the y-directions, and the other for
displacements in the x-directions.
The transformation is defined through a 3 × 3 grid point
B-spline grid, where random displacements are ranging from
a uniform distribution.

Grid point displacement
Grid size x y
3× 3 [−0.05, 0.05] [−0.05, 0.05]

Table: Parameters for B-spline transformations.
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We also inserted two more rigid deformations often found
in an UAV flight: rotation and scale.
For the scale, we consider variations of ±2%, with the
original.
For the rotation, we consider a variation of up to 10 degrees
around the point (0.5, 0.5).
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(a) (b) (c) (d)

Figure: Example of distortion in near-infrared band.
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The aim will be to learn the displacement field (U) of the
moving image to the fixed image. The displacement field
(U) is calculated as follows:

U = originalGrid − transformedGrid (2)
Where originalGrid refers to the deformation-free image
grid and transfomedGrid refers to the image grid after
inserting the deformations.
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There is the visual presentation of the displacement fields,
with the respective color map.

(a) (b)

Figure: Example of displacement fields: in (a) we have the displacement
field for the x axis; in (b) we have the displacement field for the y axis.
The colors blue and red represent positive and negative displacements
respectively.
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The network is trained to maximize the accuracy of the
estimate between the estimated vector field (Û) and the
true vector field (U).
We used Adam optimizer with a learning rate of 10−4.
In addition, the loss is defined as:

loss =
1

n

n∑
j=1

|uj − ûj | (3)

Where n refers to number of iterations.
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The end-to-end architecture used is the fully-convolutional
neural network proposed by Ronneberger, Fischer e Brox
(2015).
This architecture is known as U-Net and its use is mainly
focused on the segmentation of 2D and 3D medical images.
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To adapt the U-Net to the registration problem, the input
layer has two channels, one considered the fixed band and
the other for the moved band.
The output layer is also adapted to have two channels,
where each channel corresponds to the form vector field on
one of the axes (x and y).
Activation functions are the Leaky ReLU parameterized as
ϕ(x) = max(x , 0.01x)
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Figure: The proposed network architecture. The network takes two bands
as input, and outputs two maps: one for each vector field axis.
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First, we tested it on a set of images in gray scales.
Each image was deformed under the same conditions in
multiespectral images, however, the images are 128 × 128
pixels size.
The dataset has a total of 328 images and was divided into
sets of training, validation, and tests, in the proportion of
70%, 15%, and 15% respectively.
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In this scenario, the network input consists of a two-channel
image:

The first channel contains the deformation-free image.
The second channel contains the deformed image.

The training was carried out with 500 epochs and obtained
an accuracy of 97.54%.
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We apply the transformation learned by the network, interpo-
lating them in a new grid, as follows:

IR(x , y) = IM(x + U(x , y), y + V (x , y)) (4)
Where IR is the registered band, IM is the moved band and
U(x , y) and V (x , y) are the predicted vector fields for the
x and y axes respectively.
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With the displacement field predicted by the network applied
to the deformed image, we can visualize the result through
an overlap between the two images.

Figure: Example of registration in RGB image from the field predicted by
our network.
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As our network proved to be able to learn the displacement
field in gray scales images, we can evaluate the approach
proposed in multispectral datasets (soybean and cotton).
Both datasets were divided into sets of training, validation,
and test, in the proportion of 70%, 15%, and 15% respecti-
vely.
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Figure: The proposed approach: the input consists of an image with two
channels (a fixed band and another moved band), and the output consists
of two displacement fields (in x and y) of the band moved to the fixed
band.
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2000 training epochs were considered for this scenario.
For the soybean dataset, we obtained an accuracy ranging
from 89.90% to 93.79%
For the cotton dataset, we obtained an accuracy ranging
from 90.01% to 91.21%
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Deformed Band Accuracy

Soybean Dataset Cotton Dataset

Blue 89.90% 90.01%
Red 89.95% 90.11%
NIR 90.50% 91.21%

Red Edge 93.79% 90.54%

Table: Summary of accuracy for each of the moved bands considered.
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Figure: Example of co-registration in soybean dataset.
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Figure: Example of co-registration in cotton dataset.
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The proposed approach proved to be capable of learning
a deformation field between bands of multispectral images
with considerable precision.
Our network is able to perform co-registration after training
without the need for the manual marking of points.
The multispectral factor should be considered as an additi-
onal difficulty.
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Although our proposal is related to that of Eppenhof et al.
(2019), we take into account multispectral images.
In addition to the content of each one of the images in our
training set being totally different, while in Eppenhof et al.
(2019) the images are exclusive of lungs captured through
Computed Tomography (CT).
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In Dias Junior et al. (2020), the co-registration between
the same bands considered in this work is carried out.
However, Dias Junior et al. (2020) did not consider the
presence of non-linear deformations.
Besides needing the manual marking of points for the co-regis-
tration task.
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Demonstration of the ability of CNNs to identify the presence
(or not) of linear and non-linear deformations.
Proposition of a framework based on deep learning for
co-registration between bands of a multispectral image,
which is capable of treating linear and non-linear deforma-
tions, without the need for manual point marking.
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This work considered for the identification and correction
of deformations a random set of deformations and their
combinations. These deformations may not represent a
real scenario.
Also, our analysis of co-registration was visual. Therefore,
we chose to resize the images, preserving their proportions,
however, this can invariably lead to the loss of information
from the images.
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Consider other deformations (and their variations) in images
obtained by UAVs.
As the green band was always considered “fixed” in this
work, it is intended to define a graph to perform the co-regis-
tration, so that the best matches are found between the
bands.
Evaluate the performance of the proposed framework with
images obtained by other sensors than those considered in
this work.
Analyze quantitatively the co-registration results obtained
by our proposal.
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